
TagUnit

User Guide

September 2003
http://www.tagunit.org

TagUnit : User Guide Page 2 of 28

Contents

1 INTRODUCTION .. 4
1.1 Overview ...4
1.2 Purpose ...4
1.3 References and Further Information...4

2 TAGUNIT DISTRIBUTIONS... 5
2.1 Binary Distribution...5
2.2 Source Code Distribution ..5

3 INSTALLING TAGUNIT... 6
3.1 Prerequisites...6
3.2 Installing the TagUnit Examples...6

4 CREATING A TAGUNIT WEB APPLICATION... 7
4.1 Creating a New Web Application ..7
4.2 Using an Existing Web Application..7

5 TAGUNIT WEB APPLICATION STRUCTURE ... 8
5.1 Overall Structure...8
5.2 Deploying the Tag Library to be Tested...8
5.3 Specifying the Tag Library to be Tested ..9
5.4 Running the Tests ...9
5.5 Writing Tests ..10
5.6 Setting up and tearing down ...10
5.7 Test Results..11

6 TAGS FOR DEFINING TAGUNIT TESTS...13
6.1 testTagLibrary ..13

6.1.1 Attributes ..13
6.1.2 Usage Notes ..13
6.1.3 Example..13

6.2 tagLibraryDescriptor ..14
6.2.1 Attributes ..14
6.2.2 Usage Notes ..14
6.2.3 Example..14

7 TAGS FOR TESTING CUSTOM TAG CHARACTERISTICS16
7.1 assertNoAttributes...16

7.1.1 Attributes ..16
7.1.2 Usage Notes ..16
7.1.3 Examples ..16

7.2 assertAttribute..16
7.2.1 Attributes ..16
7.2.2 Usage Notes ..17
7.2.3 Examples ..17

7.3 assertBodyContent ..17
7.3.1 Attributes ..17
7.3.2 Usage Notes ..17
7.3.3 Examples ..17

7.4 assertInterface ...17
7.4.1 Attributes ..17
7.4.2 Usage Notes ..17
7.4.3 Examples ..18

8 TAGS FOR TESTING CUSTOM TAG BEHAVIOUR..19
8.1 assertEquals (including actualResult and expectedResult)........................19

TagUnit : User Guide Page 3 of 28

8.1.1 Attributes ..19
8.1.2 Usage Notes ..19
8.1.3 Examples ..19

8.2 assertNotEquals ..20
8.2.1 Attributes ..20
8.2.2 Usage Notes ..20
8.2.3 Examples ..21

8.3 assertContains ..21
8.3.1 Attributes ..21
8.3.2 Usage Notes ..21
8.3.3 Examples ..21

8.4 assertMatches...22
8.4.1 Attributes ..22
8.4.2 Usage Notes ..22
8.4.3 Examples ..22

8.5 assertPageContextAttribute...22
8.5.1 Attributes ..22
8.5.2 Usage Notes ..23
8.5.3 Examples ..23

8.6 assertNoPageContextAttribute...23
8.7 assertException...24
8.8 fail ..25

8.8.1 Attributes ..25
8.8.2 Usage Notes ..25
8.8.3 Examples ..25

8.9 assertCustom (including param)..25
9 LICENSE DETAILS...28

TagUnit : User Guide Page 4 of 28

1 Introduction

1.1 Overview
In the same way that JUnit allows you to write unit tests for Java classes, TagUnit
allows you to unit test JSP custom tags, inside the container. In essence, TagUnit is a
tag library for testing custom tags within JSP pages.

Even with tools like Cactus, JUnitEE and HttpUnit, testing Java Servlets and JSP
pages is hard, particularly if they contain specific business or presentation logic that
needs to be tested. Best practices around J2EE development suggest that logic
should be encapsulated in JavaBeans or JSP custom tags for better separation of
concerns, maintainability, reusability and to facilitate easier testing. Although JUnit
can be used to test JavaBeans, testing custom tags by simply invoking their methods
doesn't make sense. Custom tags are components and therefore need to be tested at
that level, in the way that they would normally be used from within a JSP page.

TagUnit provides a way to perform assertions on the content that custom tags
generate and the side-effects that they have on the environment such as the
introduction of scoped (request/page/session/application) attributes, cookies and so
on. In addition to this, assertions can be made on the constraints specified within the
tag library descriptor file that give us a way to verify the contract that a tag
provides. In just a four line JSP page, TagUnit can automatically perform tests such
as asserting whether the tag handler class is loadable and that it has setter methods
for all declared attributes. To supplement this, user defined tests provide a way to
perform assertions on the description of a tag, such as its body content and the
details of any attributes.

1.2 Purpose
This document presents a user guide to TagUnit, including details on how to install
and use the framework to test your own custom tags.

1.3 References and Further Information
Further information about the TagUnit framework can be found at the project
website, http://www.tagunit.org.

TagUnit : User Guide Page 5 of 28

2 TagUnit Distributions
This section takes a look at how to download and install the TagUnit framework and
examples onto your own development environment.

2.1 Binary Distribution
A binary version of TagUnit is available from the Sourceforge file release system via
http://www.tagunit.org – the TagUnit project website. The TagUnit binary
distribution is shipped as a ZIP file containing the following items:

• General information (readme.txt)
• Change log (changes.txt)
• User Guide (doc/tagunit-userguide.pdf, this document)
• Getting Started Guide (doc/getting-started.pdf)
• TagUnit with Ant Guide (doc/tagunit-with-ant.pdf)
• TagUnit classes (lib/tagunit.jar)
• TagUnit examples web application (tagunit-examples directory)
• TagUnit blank web application (tagunit-blank directory)
• Licensing details (license.txt)
• Sample Ant build script for running TagUnit (test.xml)

2.2 Source Code Distribution
A source code only version is also available from the website, and additionally
through direct anonymous pserver access to the CVS repository. This contains
everything that you need to build TagUnit yourself, including Java sources, TLD files
and Ant build scripts. The source distribution can be downloaded from the TagUnit
website, while CVS access to the latest code can be obtained with the following CVS
root and module name.

CVS root :pserver:anonymous@cvs.sourceforge.net:/cvsroot/tagunit

Module name tagunit

TagUnit : User Guide Page 6 of 28

3 Installing TagUnit

3.1 Prerequisites
Installing TagUnit is a straightforward process, requiring the following software:

• JavaTM 2 Standard Edition, SDK 1.3 or above1

• JavaServer Pages (JSP) 1.2 compatible web/application server such as Jakarta
Tomcat 4.0

For the automated running of TagUnit tests, you will additionally require:

• Apache Ant (tested against version 1.5.3)

3.2 Installing the TagUnit Examples
The TagUnit distribution includes a set of pre-built tests, wrapped up and ready to
deploy as a web application. Running these examples is a good way to become
familiar with TagUnit and its capabilities.

To install the examples, simply take the tagunit-examples.war file from the binary
distribution and deploy it into your chosen web/application server.

For Tomcat, this simply involves copying the tagunit-examples.war file into the
TOMCAT_HOME/webapps directory and possibly restarting the server.

To run the examples, simply point your browser to the deployed web application.

With a default Tomcat installation, the URL for this would be
http://localhost:8080/tagunit-examples/.

1 J2SE 1.4 is required to use the regular expression facilities offered by the
<tagunit:assertMatch> tag.

TagUnit : User Guide Page 7 of 28

4 Creating a TagUnit Web Application
This section explains how to set up a TagUnit web application, ready for testing.

4.1 Creating a New Web Application
Creating a separate web application in which to run your tests, although slightly
more work is the preferred approach since it keeps the tests away from the web
application containing your application specific code. After all, you probably won’t the
tests to be deployed onto the production environment by accident.

Setting up a web application specifically for testing your tags is as simple as setting
up any other web application, although for convenience, the TagUnit distribution
contains a web application called tagunit-blank that can be used as a starting
point. Unextract the tagunit-blank.war file and copy the tags that you wish to test
into the new web application. Depending on your development environment/process,
this will probably involve one of the following:

• Copying a pre-packaged JAR file (containing the tag handler classes and
TLDs) into the WEB-INF/lib directory of the web application

• Copying a JAR file containing the tag handler classes directly into the WEB-
INF/lib directory and the relevant TLD files into the WEB-INF directory

• Copying the tag handler classes directly into the WEB-INF/classes directory
and the relevant TLD files into the WEB-INF directory

The important point here is that the tag libraries are being deployed into the new
web application and any method can be used here.

4.2 Using an Existing Web Application
It is also possible to add TagUnit to an existing web application, such as one that
already contains the tags that you would like to test.

Here, you will need to take tagunit.jar from the WEB-INF/lib directory of the
tagunit-blank web application distribution and copy it into the WEB-INF/lib
directory of your web application. Next, copy the contents of the test sub-directory
(again from tagunit-blank) and copy it into the root of your existing web
application.

Finally, you will need to copy the following elements into the web.xml file of your
web application. These elements just set up the TagUnit controller servlet through
which all tests are executed.

 <servlet>
 <servlet-name>TagUnitTestController</servlet-name>
 <servlet-class>org.tagunit.controller.FrontController</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>TagUnitTestController</servlet-name>
 <url-pattern>/test/servlet/*</url-pattern>
 </servlet-mapping>

You are now ready to start testing your tags.

TagUnit : User Guide Page 8 of 28

5 TagUnit Web Application Structure
Like JUnit, for TagUnit to be able to pick up your tests, there is a defined structure
that must be followed. Let’s look at this in the context of the TagUnit examples web
application.

5.1 Overall Structure
The first step in setting up a web application is to define the overall structure. Using
the tagunit-examples web application as an example, the screenshot below shows
the structure that has been adopted.

With the tagunit-examples directory being the root of the web application, all of the
tests for the JSTL core taglib are located in a directory called jstl-core, underneath
a directory called test. This defines the top level directory that will contain all of the
tests for the JSTL core taglib, and underneath this are further sub-directories, one for
each tag that is to be tested. It’s here that the actual test pages are placed.

5.2 Deploying the Tag Library to be Tested
To test a tag library, you must remember to deploy that tag library into the web
application. This can be achieved in several ways as follows.

• Copying a pre-packaged JAR file (containing the tag handler classes and
TLDs) into the WEB-INF/lib directory of the application

TagUnit : User Guide Page 9 of 28

• Copying a JAR file containing the tag handler classes directly into the WEB-
INF/lib directory and the relevant TLD files underneath the WEB-INF
directory

• Copying the tag handler classes directly into the WEB-INF/classes directory
and the relevant TLD files underneath the WEB-INF directory

For the purposes of the tagunit-examples web application, the JAR files containing
the JSTL (jstl.jar and standard.jar) have been copied into the WEB-INF/lib
directory.

5.3 Specifying the Tag Library to be Tested
With the structure of the web application defined, the next step is to tell TagUnit
which tag library should be tested. In order to do this, create a JSP file (e.g.
index.jsp) and place it underneath the top level directory that represents the tag
library to be tested. For example, to test the JSTL core taglib, an index.jsp file has
been created underneath the jstl-core directory.

The contents of this JSP page tell TagUnit which taglib is to be tested, and this is
achieved using the following syntax.

<%@ taglib uri="http://www.tagunit.org/tagunit/core" prefix="tagunit" %>

<tagunit:testTagLibrary uri="/test/jstl-core">
 <tagunit:tagLibraryDescriptor jar="standard.jar" name="c.tld"/>
</tagunit:testTagLibrary>

Here, we’re using some of the tags from the TagUnit tag library to specify the
location of the taglib to be tested. In this example, we’re pointing TagUnit to the
taglib defined in the c.tld file inside standard.jar, which itself can be found in the
WEB-INF/lib directory. See section 6.1 for further details on the various ways in
which tag libraries can be specified using the testTagLibrary tag.

5.4 Running the Tests
With the tag library specified, it is now possible to run the tests as they stand.
Although no tests have actually been written yet, TagUnit is able to perform some
basic, automatic, tests of the tag library to check that the TLD file is correctly
specified, that tag handler classes are available, setter methods have been specified
for tag attributes and so on. To run the tests, start up your JSP container and point
your browser to the following address. Note that this may be slightly different
depending on your environment.

http://localhost:8080/tagunit-examples/test/servlet/RunTests?uri=/test/jstl-
core/index.jsp

All that this URL does is pass the URI of the JSP page specifying the tag library to be
tested to the controller responsible for actually initiating the tests. After a short
delay, the web browser should display a page containing the results of running the
automatic tests, and details of exactly what was tested.

TagUnit : User Guide Page 10 of 28

5.5 Writing Tests
Now that the web application is set up, the final step is to write some tests. Like
JUnit, TagUnit provides a way of breaking up the tests into separate units so that
tests can be logically and physically arranged according to their intent.

All TagUnit tests are written as JSP files, and like JUnit test methods, these JSP files
need to adhere to a specific naming convention. As mentioned earlier, the tests for a
specific tag are placed underneath the directory representing that tag. For example,
the tests for the JSTL core forEach tag are located within a sub-directory of jstl-
core called forEach. Each of these directories may contain zero, one or more test
JSP files, each of which must be prefixed with test and have a .jsp extension. Each
test JSP may contain one or more assertions, in a similar way to the way that JUnit
test methods may contain one or more assertions.

As far as naming conventions go, it is best to try and choose a name that states
something about the intent of the tests contained with the JSP page. For example,
you may want to have a JSP that performs assertions on the specification of a tag,
perhaps checking its attributes, body content and so on. Such a JSP might be called
testSpecification.jsp, highlighting that fact that it tests the specification. Sticking
with the forEach tag, you might want a JSP to test that tokenized strings are
correctly iterating over. This page might be called testTokens.jsp, for example.

The following example shows a snippet from the testTokens.jsp page that is used
to test the forEach tag.

<%@ taglib uri="http://www.tagunit.org/tagunit/core" prefix="tagunit" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<tagunit:assertEquals name="Loop over 3 tokens">
 <tagunit:actualResult><c:forEach var="myVar" items="1,2,3"><c:out
value="${myVar}"/></c:forEach></tagunit:actualResult>
 <tagunit:expectedResult>123</tagunit:expectedResult>
</tagunit:assertEquals>

<tagunit:assertEquals name="Loop over zero tokens">
 <tagunit:actualResult><c:forEach var="myVar" items=""><c:out
value="${myVar}"/></c:forEach></tagunit:actualResult>
 <tagunit:expectedResult/>
</tagunit:assertEquals>

As this illustrates, TagUnit tests are typically nothing more than simple usages of the
tag being tested, wrapped up inside some of the various assertion tags that are
provided by the TagUnit framework. For a full listing of the assertions available,
please see the next sections.

5.6 Setting up and tearing down
The final point to mention is that, like JUnit, there are often times when you have
common set up and tear down logic within your tests. Where JUnit allows setUp and
tearDown methods to be written, TagUnit provides the ability to place similar logic in
JSP pages called setUp.jsp and tearDown.jsp respectively. These should be placed
in the directory representing the appropriate tag, next to the testXXX.jsp pages
containing the tests for that tag. As with JUnit, these pages get called before every

TagUnit : User Guide Page 11 of 28

testXXX.jsp page. For example, you may want to initialize a request scoped object
in the set up stage, and destroy this during tear down, rather than doing this inside
each and every testXXX.jsp page.

5.7 Test Results
After the tests have successfully been executed, a web page will be displayed in your
browser detailing the results of those tests. The top part of the page is colour-coded
to represent the overall test results. Pass, warning or fail are coded as green, yellow
or red respectively. Underneath this is a small bar chart summarizing the number of
tests for a particular status as follows.

Test status Description
Pass The tests passed.
Warning The tests passed although a warning was raised. The most usual

situation for this to occur is when only the automatic tests have
been performed on a tag. In other words, you haven't yet written
any assertions to test a particular tag.

Failure The test or assertion failed.
Error The test or assertion could not be completed because of an error.

A error message or stack trace will be given further down the
page.

The following screenshot shows an example of the web page displayed after running
some tests.

Drilling down further into the information provided by the test results, the web page
contains a section for each tag in the tag library being tested, regardless of whether
you have written any tests for them yet. The following screenshot shows the results
for the JSTL catch tag.

TagUnit : User Guide Page 12 of 28

First are the results from the automatic TagUnit tests. In this example, TagUnit has
tested that the tag handler class is loadable, can be instantiated and implements the
Tag interface. In addition to this, TagUnit also runs some tests on the attributes of
any given tag, in this case checking that the appropriate setter method is available
on the tag handler class for the var attribute. As mentioned before, all of these tests
are performed automatically and transparently – no additional work is necessary.

Following this are the results from the tests that we have written ourselves. In this
example, tests have been written in two JSP files, one called testSyntax.jsp and
one called testSpecification.jsp, both of which contain various assertions using
the assertion tags detailed in section 7.

TagUnit : User Guide Page 13 of 28

6 Tags for Defining TagUnit Tests
There are several types of tags within TagUnit – those that are used to define tests
and those that perform assertions. This section covers those tags used to setup and
define the tests that are to be executed, all of which are a part of the core tag
library, imported with the following taglib directive:

<%@ taglib uri="http://www.tagunit.org/tagunit/core" prefix="tagunit" %>

6.1 testTagLibrary
The <tagunit:testTagLibrary> tag is the outermost container for defining the suite
of tests that are to be performed on the tags within a tag library. It defines the tag
library that is to be tested, and specifies the top-level location from which the tests
for the tags in the tag library will be found.

The processing of this tag includes looking for the tags that are defined in the
corresponding TLD file (see <tagunit:tagLibraryDescriptor> tag below) and executing
the tests that are defined for them. In addition to this, some automatic tests are
performed on each tag behind the scenes. These include the following:

• Checks that the tag handler corresponding to the tag exists and is available on
the classpath for the web application.

• Checks that the tag handler corresponding to the tag implements the
javax.servlet.jsp.tagext.Tag interface.

• Checks that the tag extra info class associated with the tag (if applicable) exists
and is available on the classpath for the web application.

• Checks that the tag extra info class associated with the tag (if applicable) extends
the javax.servlet.jsp.tagext.TagExtraInfo class.

• For each attribute of the tag, checks that a corresponding public setter method is
available on the tag handler class.

6.1.1 Attributes
Name Required Request-time

Expression
Description

uri Yes No This is the uri pointing to the directory in
which the tests for the tags in the tag library
are to be found.

6.1.2 Usage Notes
There are no special usage notes for this tag.

6.1.3 Example
The following JSP snippet is an example of how the <tagunit:testTagLibrary> tag
is used.

<tagunit:testTagLibrary uri=”/test/jstl-core”>
 ...
</tagunit:testTagLibrary>

TagUnit : User Guide Page 14 of 28

Here, the uri attribute points to the directory that contains the actual tests for the
tag library, which in this case is /test/jstl-core. Underneath this directory are
directories containing the tests for each tag, and they must be named in accordance
with the tag that they are testing. In this example, the JSP pages containing the
tests for a tag called forEach would need to be located in the /test/jstl-
core/forEach directory, as described in section 5.1, Overall Structure.

6.2 tagLibraryDescriptor
The <tagunit:tagLibraryDescriptor> tag is nested within the
<tagunit:testTagLibrary> tag and tells the TagUnit framework where to find the
tag library descriptor for the tag library that is being tested. Without this, none of the
automatic TagUnit assertions can be performed and TagUnit won't know which tag
library is being tested.

6.2.1 Attributes
Name Required Request-time

Expression
Description

uri No No The uri that points to the location of the TLD
file.

jar No No The name of the JAR file (residing in WEB-
INF/lib) that contains the TLD file.

name No No The name of the TLD file.

6.2.2 Usage Notes
The only valid combinations of attributes permitted for usages of this tag are as
follows:

• uri
OR
• jar and name

In other words, you either specify a URI to the TLD file, or the name of a JAR file and
the name of the TLD file that resides inside that JAR file. Any other combination will
raise an exception.

6.2.3 Example
The following JSP snippet is an example of how the
<tagunit:tagLibraryDescriptor> tag would be used. Note that it must be nested
within a <tagunit:testTagLibrary> tag.

<tagunit:testTagLibrary uri=”/test/jstl-core”>
 <tagunit:tagLibraryDescriptor jar="standard.jar" name="c.tld"/>
 ...
</tagunit:testTagLibrary>

In this example, the framework will look for the WEB-INF/lib/standard.jar file, and
then look for the tag library descriptor (c.tld) in the META-INF directory of the JAR
file. This usage is useful if you are using a prepackaged tag library, where a
complete, ready-to-deploy JAR file is used.

TagUnit : User Guide Page 15 of 28

If, however, the TLD file is simply located somewhere underneath the WEB-INF
directory, the following usage should be adopted.

<tagunit:testTagLibrary uri=”/test/jstl-core”>
 <tagunit:tagLibraryDescriptor uri="/WEB-INF/c.tld"/>
 ...
</tagunit:testTagLibrary>

In this example, the framework will look for the tag library descriptor file (c.tld)
within the WEB-INF directory of your web application.

TagUnit : User Guide Page 16 of 28

7 Tags for Testing Custom Tag
Characteristics

Although most of the time it will be the functionality of a custom tag that is being
tested, it can also be useful to perform assertions based upon the specification and
characteristics of a particular tag. This section covers the tags that make this
possible, all of which are again a part of the core tag library, imported with the
following taglib directive:

<%@ taglib uri="http://www.tagunit.org/tagunit/core" prefix="tagunit" %>

All of the following tags appear within the testXXX.jsp pages that implement the
tests for a specific tag.

7.1 assertNoAttributes
The <tagunit:assertNoAttributes/> asserts that the tag that is currently being
tested doesn’t take any attributes. In other words, it tests that the description of that
tag in the TLD file doesn’t declare any attributes.

7.1.1 Attributes
There are no attributes for this tag.

7.1.2 Usage Notes
This tag has a body content of empty, and therefore must be used on the page
without content between its opening and closing tag.

7.1.3 Examples
This tag is used standalone, and without body content as follows.

<tagunit:assertNoAttributes/>

Given the context of the current tag being tested, this assertion evaluates to true if
the tag has no attributes, and false otherwise.

7.2 assertAttribute
This tag represents the opposite of the previous tag, and asserts that a named
attribute exists on the tag currently being tested.

7.2.1 Attributes
Name Required Request-time

Expression
Description

name Yes No The name of the attribute that is being
asserted.

type No No The fully qualified name of the class
(type) of the attribute.

required Yes No Whether the attribute is marked as
required.

rtexprvalue Yes No Whether the attribute is marked as
accepting a request-time value.

TagUnit : User Guide Page 17 of 28

accepting a request-time value.

7.2.2 Usage Notes
There are no special usage notes for this tag.

7.2.3 Examples
This tag is used standalone, and without body content as follows.

<tagunit:assertAttribute name="scope" required="false"
rtexprvalue="false"/>

Given the context of the current tag being tested, this assertion evaluates to true if
the named attribute exists, and is defined as specified.

7.3 assertBodyContent
This tag performs an assertion on the type of body content that the tag currently
being tested can accept. In other words, it checks the body content declared for the
tag in the tag library descriptor file.

7.3.1 Attributes
Name Required Request-time

Expression
Description

name Yes No The name of the body content – “empty”,
“JSP”, “tagdependent”.

7.3.2 Usage Notes
There are no special usage notes for this tag.

7.3.3 Examples
The following example asserts that the tag currently being tested has a body content
of empty.

<tagunit:assertBodyContent name="empty"/>

7.4 assertInterface
This tag asserts that the tag handler of the tag currently being tested implements
the named interface (or class). This is particularly useful for those tags that are to be
extended, or for those tags that cooperate with one another through a predefined
interface.

7.4.1 Attributes
Name Required Request-time

Expression
Description

name Yes No The fully qualified name of the
class/interface.

7.4.2 Usage Notes
There are no special usage notes for this tag.

TagUnit : User Guide Page 18 of 28

7.4.3 Examples
The following example asserts that the tag handler for the current tag implements
the javax.servlet.jsp.jstl.core.LoopTagSupport class.

<tagunit:assertInterface
 name="javax.servlet.jsp.jstl.core.LoopTagSupport"/>

TagUnit : User Guide Page 19 of 28

8 Tags for Testing Custom Tag Behaviour
The final set of tags that make up the TagUnit core tag library are those that perform
the actual assertions. For example, these tags allow conditions to be checked, and
actual/expected content to be compared. This section covers the tags that make this
possible, all of which are again a part of the core tag library, imported with the
following taglib directive:

<%@ taglib uri="http://www.tagunit.org/tagunit/core" prefix="tagunit" %>

Again, all of the following tags appear within the testXXX.jsp pages that implement
the tests for a specific tag.

8.1 assertEquals (including actualResult and
expectedResult)

One of the simplest types of assertion that can be performed with a testing
framework is to compare an actual result to an expected result. With TagUnit, this is
performed using the assertEquals tag, in conjunction with two other tags -
actualResult and expectedResult.

8.1.1 Attributes
Name Required Request-time

Expression
Description

name Yes No The name of the test.
ignoreWhitespace No No True if whitespace should be

ignored during comparisons, false
otherwise.

8.1.2 Usage Notes
The body content of the actualResult and expectedResult tags is JSP, allowing
other custom tags and JSP elements to be used when assembling content for
comparison.

In additon, expectedResult can be used with an attribute called uri that points to a
text file containing the expected result. This is useful when the expected result is
very large and you would like to keep it away from the JSP page containing the
assertions.

8.1.3 Examples
The following snippet is an example of how the <tagunit:assertEquals> tag might
be used.

<tagunit:assertEquals name="Simple test of generated content">
 <tagunit:expectedResult>...</tagunit:expectedResult>
 <tagunit:actualResult>...</tagunit:actualResult>
</tagunit:assertEquals>

The body content of this tag is simply made up of two other tags that explicitly
demarcate what the actual and expected results will be. At runtime, the body content

TagUnit : User Guide Page 20 of 28

of the <tagunit:actualResult> and <tagunit:expectedResult> tags are evaluated
and a comparison is made. If the evaluated body content is equal, the assertion is
true, otherwise it evaluates to false.

Here is an example of how the JSTL <c:if> tag could be tested.

<tagunit:assertEquals name="Simple condition (always true)">
 <tagunit:expectedResult>
 aaa
 </tagunit:expectedResult>
 <tagunit:actualResult>
 <c:if test="${1 < 2}">aaa</c:if>
 </tagunit:actualResult>
</tagunit:assertEquals>

Here, the condition used within the <c:if> tag always evaluates to true and
therefore the body content of aaa is included. This is then compared to the expected
result of aaa and the assertion subsequently evaluates to true.

The final example shown here demonstrates how to specify an external file that
contains the expected results.

<tagunit:assertEquals name="A comparison of lots of content">
 <tagunit:expectedResult uri="/test/someFileContainingLotsOfContent"/>
 <tagunit:actualResult>
 <someTagThatGeneratesLotsOfContent/>
 </tagunit:actualResult>
</tagunit:assertEquals>

8.2 assertNotEquals
This performs the opposite of the assertEquals tag – it checks that actual content
doesn't equal the expected content. Like the assertEquals tag, this is performed in
conjunction with two other tags - actualResult and expectedResult.

8.2.1 Attributes
Name Required Request-time

Expression
Description

name Yes No The name of the test.
ignoreWhitespace No No True if whitespace should be

ignored during comparisons, false
otherwise.

8.2.2 Usage Notes
The body content of the actualResult and expectedResult is JSP, allowing other
custom tags and JSP elements to be used when assembling content for comparison.

In additon, expectedResult can be used with an attribute called uri that points to a
text file containing the expected result. This is useful when the expected result is
very large and you would like to keep it away from the JSP page containing the
assertions.

TagUnit : User Guide Page 21 of 28

8.2.3 Examples
The following snippet is an example of how the <tagunit:assertNotEquals> tag
might be used.

<tagunit:assertNotEquals name="Simple test of generated content">
 <tagunit:actualResult>...</tagunit:actualResult>
 <tagunit:expectedResult>...</tagunit:expectedResult>
</tagunit:assertNotEquals>

The body content of this tag is simply made up of two other tags that explicitly
indicate what the actual and expected results will be. At runtime, the body content of
the <tagunit:actualResult> and <tagunit:expectedResult> tags are evaluated
and a comparison is made. If the evaluated body content is not equal, the assertion
is true, otherwise it evaluates to false.

8.3 assertContains
Where the assertEquals tag tests for equality between an actual and expected
result, the assertContains tag tests that the actual result contains the expected
result. As with the assertEquals tag, assertContains is used in conjunction with
the actualResult and expectedResult tags.

8.3.1 Attributes
Name Required Request-time

Expression
Description

name Yes No The name of the test.
ignoreWhitespace No No True if whitespace should be

ignored during comparisons, false
otherwise.

8.3.2 Usage Notes
The body content of the actualResult and expectedResult is JSP, allowing other
custom tags and JSP elements to be used when assembling content for comparison.

8.3.3 Examples
The following snippet is an example of how the <tagunit:assertContains> tag
might be used.

<tagunit:assertContains name="Simple test of generated content">
 <tagunit:expectedResult>
 lots of content
 </tagunit:expectedResult>
 <tagunit:actualResult>
 Here is lots of content that is automatically generated
 </tagunit:actualResult>
</tagunit:assertContain>

The body content of this tag is simply made up of two other tags that explicitly
indicate what the actual and expected results will be. At runtime, the body content of
the <tagunit:actualResult> and <tagunit:expectedResult> tags are evaluated

TagUnit : User Guide Page 22 of 28

and a comparison is made. If the actual result contains the expected result, the
assertion is true, otherwise it evaluates to false.

8.4 assertMatches
Where the assertEquals tag tests for equality between an actual and expected
result, the assertMatches tag tests that the actual result matches the expected
result (a regular expression). As with the assertEquals tag, assertMatches is used
in conjunction with the actualResult and expectedResult tags.

8.4.1 Attributes
Name Required Request-time

Expression
Description

name Yes No The name of the test.
ignoreWhitespace No No True if whitespace should be

ignored during comparisons, false
otherwise.

8.4.2 Usage Notes
The body content of the actualResult and expectedResult is JSP, allowing other
custom tags and JSP elements to be used when assembling content for comparison.

8.4.3 Examples
The following snippet is an example of how the <tagunit:assertMatches> tag might
be used.

<tagunit:assertMatches name="Simple test of generated content">
 <tagunit:expectedResult>^Some .*</tagunit:expectedResult>
 <tagunit:actualResult>Some content</tagunit:actualResult>
</tagunit:assertMatches>

The body content of this tag is simply made up of two other tags that explicitly
indicate what the actual and expected results will be. At runtime, the body content of
the <tagunit:actualResult> and <tagunit:expectedResult> tags are evaluated
and a comparison is made. If the actual result matches the expected result (a
regular expression), the assertion is true, otherwise it evaluates to false.

8.5 assertPageContextAttribute
This tag asserts that a named attribute is available in a specific scope (page,
request, session or application) and can be used when tags use the page context as
a location for sharing information, confirming that the correct objects are placed in
the appropriate scope. In addition, this tag can also be used to confirm that specific
properties (of a JavaBean) or elements (of a java.util.Map) are set correctly.

8.5.1 Attributes
Name Required Request-time

Expression
Description

name Yes No The name of the attribute to be tested for.
type Yes No The type of the named object.
scope No No The scope of the named object (“page”,

“request”, “session” or “application”). If
omitted, the default is "page".

TagUnit : User Guide Page 23 of 28

“request”, “session” or “application”). If
omitted, the default is "page".

value No Yes The value to be compared against. This
can be a simple string or an object passed
by a request-time expression.

property No No If the named object is a JavaBean, this
represents the name of the property on
that bean to test.

If the named object is a java.util.Map, this
represents the key of the value to test.

8.5.2 Usage Notes
There are no special usage notes for this tag.

8.5.3 Examples
The following example asserts that a variable called “myString” of type
java.lang.String exists at page scope.

<tagunit:assertPageContextAttribute name="myString"
type="java.lang.String"/>

The next example asserts the same, except that it tests for the object in session
scope.

<tagunit:assertPageContextAttribute name="myString"
type="java.lang.String" scope=”session”/>

Building upon this, the following example illustrates how the value of an object can
be asserted too.

<tagunit:assertPageContextAttribute name="myString"
type="java.lang.String" value=”Hello” scope=”session”/>

The next two examples show how a JavaBean property, and an entry in a
java.util.Map can be tested.

<tagunit:assertPageContextAttribute name="bean" property="name"
 type="org.mycompany.MyJavaBean" value="simon"/>

<tagunit:assertPageContextAttribute name="map" property="name"
 type="java.util.HashMap" value="simon"/>

8.6 assertNoPageContextAttribute
This tag performs the opposite assertion of the
<tagunit:assertPageContextAttribute/> tag in that it checks that an object with
the specified name does not exist in the specified scope.

8.6.1.1 Attributes

Name Required Request-time
Expression

Description

TagUnit : User Guide Page 24 of 28

name Yes No The name of the object to test for.
scope No No The scope of the named object (“page”,

“request”, “session” or “application”). If
omitted, the default is "page".

8.6.1.2 Usage Notes

There are no special usage notes for this tag.

8.6.1.3 Examples

This example asserts that an object called “myString” does not exist in session
scope.

<tagunit:assertNoPageContextAttribute name="myString" scope=”session”/>

8.7 assertException
This tag provides a way to ensure that the correct exceptions are thrown from a
custom tag, given the appropriate error condition in incorrect usage. At runtime, this
tag captures any exceptions that are thrown during processing so that assertions can
be performed on the java.lang.Throwable instance.

8.7.1.1 Attributes

Name Required Request-time
Expression

Description

name Yes No The name of the test.
exception No No The fully qualified name of the exception

that is being tested for.
message No No The text representing the message

provided by the exception. If specified, this
is compared to the string returned from
the getMessage() method of the exception
that was thrown.

8.7.1.2 Usage Notes

The exception and message attributes of this tag are optional and, if specified,
provide the tag with more information with which to perform assertions. In its most
basic form (by just specifying the name attribute), this tag simply checks that an
exception was thrown. Specifying the exception and/or message attributes allow the
tag to perform assertions on the type (class) and message of the exception instance
respectively.

8.7.1.3 Examples

The following example demonstrates how the assertException tag might be used to
test that an exception is thrown when a custom tag is used incorrectly. Here, the
TagUnit expectedResult tag is used outside of an
assertEquals/assertNotEquals/etc tag.

<tagunit:assertException name="Incorrect nesting"
exception="javax.servlet.jsp.JspTagException" message="expectedResult
tag must be nested.">
 <tagunit:expectedResult/>

TagUnit : User Guide Page 25 of 28

</tagunit:assertException>

If the named exception is thrown inside the body content, the assertion evaluates to
true, otherwise it evaluates to false to indicate that an exception wasn't thrown.

8.8 fail
This tag provides a way for an assertion to be instantly failed, which can be useful to
indicate that a tag hasn't worked as expected. For example, it could be used to test a
custom tag that provides conditional behaviour by placing the fail tag in the branch
that should not be evaluated to true.

8.8.1 Attributes
Name Required Request-time

Expression
Description

name Yes No The name of the test.
message Yes No A message to help determine what went

wrong.

8.8.2 Usage Notes
There are no special usage notes for this tag.

8.8.3 Examples
This example tests that a conditional tag chooses the correct branch, demonstrating
how the fail tag can be used to catch failures. This example is based upon the JSTL
<c:choose> tag.

<c:set var="i" value="1"/>
<c:choose>
 <c:when test="${i < 5}">
 1st block chosen
 </c:when>
 <c:otherwise>
 <tagunit:fail name="Matching when block exists" message="The
otherwise block was chosen"/>
 </c:otherwise>
</c:choose>

If the test works as expected, the when block is chosen and the test passes. On the
other hand, if there is a problem with the tag and the otherwise block is executed,
the fail tag tells TagUnit that the test has failed.

8.9 assertCustom (including param)
The assertion tags provided by TagUnit allow a wide range of simple tests to be
performed. However, there may be times when some additional functionality is
needed and there are two options available. The first is to download the source code
for TagUnit and extend the existing tags. The other option is to use the
assertCustom tag in conjunction with your own class that encapsulates the
functionality you need.

TagUnit : User Guide Page 26 of 28

In order to do this, you will need to write a Java class that extends the
org.tagunit.test.CustomTestPackage class, providing an implementation of the
following method that realizes the functionality of your test(s).

public void executeTest(TestContextContainer testContext);

The parameter to this method (of type TestContextContainer) is a container for
storing the results from tests that you might perform. In using this class, you can set
various properties of the test context (e.g. name, pass/fail/warning/etc) as well as
build up a hierarchy of nested, sub-contexts so that a group of assertions can be
organized appropriately. In addition, various methods on the superclass
(org.tagunit.test.CustomTestPackage) provide a way to get access to the current
HTTP request, the page context and so on. For more information about functionality
provided by this and related classes, please see the source code and/or javadocs.

8.9.1.1 Attributes

Name Required Request-time
Expression

Description

name Yes No The name of the test.
type Yes No The fully qualified name of the class

implementing the custom tests and
assertions. This class must extend the
org.tagunit.test.CustomTestPackage
class.

8.9.1.2 Usage Notes

The class representing the custom assertion must be available on the classpath of
the web application. This means that the class must either reside inside a JAR in the
WEB-INF/lib directory, or in the appropriate directory hierarchy underneath the
WEB-INF/classes directory.

8.9.1.3 Examples

Here is an example of how to build a simple custom test class.

package com.yourcompany.tagunit;

import javax.servlet.jsp.PageContext;

import org.tagunit.TestContextContainer;
import org.tagunit.TestContext;

/**
 * A simple custom test package example.
 *
 * @author Simon Brown
 */
public class CustomTestPackageExample extends CustomTestPackage {

 /**
 * Creates a new test package.
 *
 * @param name the name of the test package
 */

TagUnit : User Guide Page 27 of 28

 public CustomTestPackageExample(String name) {
 super(name);
 }

 /**
 * Runs the tests that are part of this test package.
 *
 * @param testContext the context in which these tests are to be run
 */
 public void executeTest(TestContextContainer testContext) {
 // get access to the current JSP page context
 PageContext pageContext = getPageContext();

 // get the name of the object we need to look for
 String objectName = (String)getParameter("name");

 // use the page context in some way
 Object someObject = pageContext.findAttribute(objectName);

 // and finally perform some assertions on it,
 // setting the result as appropriate
 testContext.setStatus(TestContext.PASS);
 }

}

All that this test class does is look up an object from the page context, the name of
which is specified as a parameter when the tag is used (see below). Some assertions
would then be performed (e.g. testing the object isn't null, etc) and the status of the
TestContextContainer is updated accordingly. With the class written, it needs to be
compiled and placed into the classpath of the web application, as described in the
special usage notes above. To use a custom test class, the assertCustom tag can be
used as follows.

<%@ taglib uri="http://www.tagunit.org/tagunit/core" prefix="tagunit" %>

<tagunit:assertCustom name="An example custom test" type="
com.yourcompany.tagunit.CustomTestPackageExample">
 <tagunit:param name="name" value="someObject" />
</tagunit:assertCustom>

The assertCustom tag allows you to specify the fully qualified name of the class that
contains your testing logic, while the nested param tag allows you to specify
parameters at runtime. In this example, a single parameter called name is supplied,
with a value of someObject. To specify more parameters, just nest further param
tags.

TagUnit : User Guide Page 28 of 28

9 License Details
TagUnit is distributed under a BSD style license, meaning that it can be used,
modified and distributed freely provided that the original license details and
copyright notice (as follows) are included:

Copyright (c) 2002, Simon Brown
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 - Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 - Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

 - Neither the name of TagUnit nor the names of its contributors may
 be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

For further information about this, and other open source issues, please take a look
at http://www.opensource.org.

